:: Boilers &Thermic Fluid Heaters --- ID :: 16402
Troubleshooting Heat-Transfer Fluid Systems - Part 2
A very high viscosity thermal fluid can be a reason for failure of a heat transfer system.


Articles about thermal fluid systems often start with a variation of the statement that “thermal fluid systems typically require little ongoing maintenance for the first few years of operation” and then go on to extol the various advantages of indirect thermal-fluid process heating over competitive heating methods, such as direct heat, steam and so on. The corollary to that statement, however, is that by the time there is a problem, the operating personnel that were trained on the system have moved on, been excessed or promoted. As a result, when things do go wrong, the guessing begins. And, unless there is an obvious cause like a geyser from the expansion-tank vent or a pump that sounds like it’s moving ball bearings, someone will likely blame the thermal fluid for the problem. There are several problems that seem to occur with some frequency. This article reviews a number of real examples and describes how the symptoms can be misinterpreted. The suspected fluid properties and the testing procedures necessary to determine which of the fluid properties (if any) is responsible for the problem are examined. Finally, recommended corrective actions are proposed. 

Decrease in production rates 

The following is an example to explore production-rate problems, with the analyses and findings that resulted.

EXAMPLE: A large facility experienced reduced productivity from its thermal fluid system that was operating at 450°F. The heater outlet temperature was increased to maintain throughput on several pieces of equipment, but the process was still losing ground. (Note: this is an excellent reason to log the heater outlet temperature so that you know when changes started, should you have a problem.) Previous test results had indicated the presence of carbon sludge in the fluid, so plans were made to activate a sidestream filter to remove the carbon. Before the plan was implemented, however, a sample of thermal fluid was taken that immediately identified the problem. The fluid property that has the greatest effect on heat transfer rates is viscosity. Because the fluid heattransfer coefficient (which controls the rate of heat transfer between the heat exchange surface and the fluid) is only one element of the overall heat-transfer coefficient, changes in the viscosity at elevated temperature (350°F or more) have to be significant (on the order of 200%) to cause a noticeable change in system performance. In this case, the problem was obvious and required no testing — a sample that was extracted at operating temperature went almost solid when it cooled. This put the fluid well above the 200% threshold. 

Author Jim Oetinger is the director of technology at Paratherm Corp. (4 Portland Rd., West Conshohocken, PA 19428; Phone: 800-222-3611, Fax: 610-941-9191; Website: www. paratherm.com). He has over 30 years experience in the chemical and plastics indus- tries. He has been involved with a wide range of products and processes including pig- ments, refrigerants, consumer plastic recycling, polymer compounding, process instrumentation and spray dried polymers. In addition, Oetinger has over 20 years experience in sales, marketing, and technical support of thermal fluids. He has authored articles on thermal fluid and system troubleshooting for this and other publications. A member of the Delaware Valley Chapter of the AIChE, he holds a B.S.Ch.E. from Clarkson University and a Masters of Management degree from Northwestern University. Oetinger and his family reside in a suburb of Philadelphia, Pa.

content and image courtesy:www.paratherm.com